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One-dimensional steady flow is considered for a viscous, heat-conducting 
gas with finite electrical conductivity. 

Under certain hypotheses (1) on the equation of state. it is shown 
that there exist flows which represent evolutionary [1J fast and slow 
shock waves of not too large amplitudes. The fast shocks given by such 
flows turn out to be unique. 

For the description of the dissipative process, the principle of 
Onsager is used, in which the rate of entropy increase diS/dt is con- 
sidered to be positive, if at least one of the space derivatives of the 
flow parameters is different from zero. The method of the proof is based 
on the results of [2,3], which show examples of systems of partial 
differential equations in two and three unknowns and study SOlUtiOnS of 
the travelling wave type. For more special dissipation laws, the problem 
of the structure of oblique magnetohydrodynamic shock waves has already 
been considered in [4-91. 

We shall assume that the equation of state of the gas 

p = p(V, S) (V = l/p, the specific volume) 

satisfies the conditions 

pv’ < 0, P\7/ > 0, PSI > 0 (1) 

In considering one-dimensional (along x) steady gas flows with an 
electric field, we may use the conservation laws, expressing the viscous 

stre,sses T_, 7xJ, fXZ and the heat flow Q in the medium in terms of the 
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parameters characterizing the gas flow and electric field: 

V,, T, u, v, w, H,, Hz, H, = con& E, = const, E, = const 

‘Ihis permits the calculation of the entropy flow 

H ‘V 
P =~+ms=$[~+~+~+d+~-i(V,T)- 

-H&p - H,$Izw-JV+ e 1 (2) 
Here A is the mass flow; f(V, T) the Helmholtz free energy per unit 

mass; J the flow of the x-component of the momentum; E the energy flow 
divided by m 

df = -SdT - pdV, Ho = 2, E, = 2 (c is the light speed) 

The coordinate 
canponents of the 

system is so chosen that By as well as the y- and z- 

manentum equal zero. 

Obviously , the 

crease thus 
flux of entropy flow is connected with its rate of in- 

dP d,S 
-=dt dx 

According to the principle of Onsager 

where Ji are the 

Taking as Xi the 

Hy, HZ, which we 

generalized fluxes, 
derivatives ;1 i 

and Xi the generalized forces. 
= dqi/dx of the quantities V, U, W, T, 

denote by qi, and using the identity 

we obtain from Equations (3) and (4) 

aP/aqi= Jt (5) 

kt us assume, as is usually done in thermodynamics of irreversible 
processes, that the Ji are linear functions of Xi 

such that the quadratic form 
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for arbitrary Gk satisfies the inequality D>O. In what follows, the co- 

efficients L.. 
tions of q&. 

IJ 
will be assumed to be continuously differentiable func- 

Moreover, we shall assume that the matrix Lrj is nonsingular, i.e. 

that D > 0 if any one of the Gi # 0. Substituting the expression for J. 
into Equation (S), we obtain a system of equations satisfied by the fdc- 

tions qi(x) in one-dimensional steady flow 

x Lij ii = g 

j 2. 

If the matrix Lij is symmetric, which is generally not the case if a 

magnetic field is present, then Equation (6) may be written in the form 

The equations describing the steady magnetohydrodynamic flows may be 

imnediately reduced to the form (6) or (7). In the case Hz = 0, ID = 0, 

and the matrix L ij is diagonal, Equations (7) were obtained in [Sl, in 

which, under the indicated restrictions, the existence and uniqueness of 

the solution, representing the structure of a fast shock wave was proved. 

A uniform translational flow (Gi = 0) corresponds to a singular point 

A, of the system (6), or equivalently, to a stationary point of the func- 

tion P(qi). ‘Ihs the solution to the problem of shock-wave structure must 

be represented by an integral curve of the system (6) in the qi space, 

connecting the singular points of this system, 

One readily convinces oneself that all the singular points of system 

(6) lie in the plane H = 0, w.= 0, if z 

Ihe case 

&(u-F-&z) =o for 2=foo 

correspond either to gasdynamical shock waves, or to shock waves lying 

on the boundary of evolutionarity. Therefore, we shall assume throughout 

that E, # 0. For this, as follows from 151, P(qi) possesses not more than 

four stationary points A,, A,, A,, A,, in which 
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P (4 < P (4 < P (4 < P (4) 

a+ (4) < u (AI), uA (Aa) < u (Aa) < a+ (4) (8) 
~_(As)<~(AsbOA(Aa) W,)<=_(4) 

Here a+, aA and a_ are the propagation speeds of the fast, Alfven, 
and slow small-disturbance waves, and u = mV. In addition, to fast waves 
correspond transitions A, - A,, and to slow waves correspond A - A,. We 
observe, that the points A, and A, lie in the region V > 4wH,, 23 , while 
the points A, and A, in the region V < 4wH,,', since u24vHo2 = aA2V. 

We consider the behavior of the function P(qi) - P(A,) in the neighbor- 
hood of the singular point A,. If we retain in this difference only the 
quadratic terms in the differences in coordinates (the linear terms 
vanish since A, is a stationary point of the function P(qi)), we may 

show that the quadratic fozm so obtained is non-singular and that its 
trace equals 8 - 2a. This is easily seen by reducing the quadratic form 
representing the dominant part of the difference P( qi) - P(A,) to a sum 
of squares (as was done in [51 for the case H = 0, w = 0). 

Z 

'Ihe behavior of the integral curves of the system (6) in the neighbor- 
hood of the singular points A, is determined by the linearized system of 
equations, which are obtained by substituting the dominant part of 

p(qi) - P(A,) into the right-hand side of (6). Since the system under 
consideration is dissipative in the sense of [lo], then from the results 
of this work and from the inequalities (8), it follows* that out of the 
six eigenvalues of the linearized system, 7 - a have positive real parts, 
and a - 1 have negative real parts. Thus, at each singular point A,, 

there is a 7 - a dimensional surface consisting of all the integral 
curves issuing from the point, and an a - 1 dimensional surface consist- 
ing of all the integral curves entering the point. 

Consider the surface P(qi) = C, C = const. The portion of the surface 
lying in the region V > 0, T > 0, contains the point at infinity. 
Actually, the intersection of the surface P(qi) = C, which is represented 

l All conclusions of LlOJ remain true in the case when in some of the 
linear first order equations comprising the system. the derivatives 
of the unknown functions with respect to time are missing. In the case 

under consideration the ideal system of the highest rank does not con- 

tain the nave speed [I; therefore, the number of roots with positive 
real parts changes only when U. while varying, crosses values of 
speeds of propagation of weak magnetohydrodynamic .liscontinuities. 
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by the equation 

2P(q,)= ~[%(~“-4~V+~)*+~(HI-~e)a+ 

+ (I- 7) (3 + vygJ + (I- 7) wq + 2F (V, T) = 2c (9) 

F(V, T)=$[e+q - vTa&ea - Jr--f(V, T)] 

with the plane V = const, T = const defines a second order surface in a 
four-dimensional space, which for V < 4&f,,* extends to infinity. 

Let us assign a large negative value to C and then let it increase. 
Ihe surface P(qi) = C will then change, but its topological character 
will only change when C passes through the values C = P(A,). By virtue of 
the inequalities (8), the first change in the topological character of 
the surface P(qi) = C will occur when, in the process of C increasing, 
the surface P(qi) = C passes through the point A, (if it exists for given 
values of E,, Ho, J, E). Since the point A, is a node for the system (6), 
then for C = P(A,) + 6, 6 being a sufficiently small positive number, the 
surface P(qi) = C in the neighborhood of the point A, will be a closed 
surface containing the point A, in its interior. The surface P(qi) = C 
contains the point at infinity, therefore, it must have another branch 
extending to infinity. The region P(qi)<C expands as C increases. ‘lhe 
closed branch of the surface P(qi) = C, containing the point A, inside, 
does not go out of the region V > &H,,“, T > 0. Actually, the intersec- 
tion of the closed branch of P( qi) = C with any plane is a closed surface. 
However, for V < 41df~ * , the intersection of the surface P(qi) = C with 
the plane V = const, T= const does not contain a closed branch. Moreover, 
the intersection of the surface P(qi) = C with the plane T = 0 does not 
depend on the value of C. For values of C close to P(A, ), the closed 
branch of the surface P(qi) = C containing the point A, inside does not 
intersect the plane T = 0; consequently, this branch does not intersect 
this plane for any C. 

Since grad P(qi) nowhere tends to infinity, then for increasing C, 
both branches of the surface move with non-zero velocity toward each 
other and must be joined at some value C. ‘Ibis connecting must occur at 
a stationary point of the function P( qi), which is the point A,, since 
out of the remaining singular points it is the only one lying in the 
region V > 4wH02, and it is the only one that can describe the joining 
of the two parts of the surface P(qi) = C. We assume that the shock waves 
are not too strong, and therefore the values P(A,) and P(A,) are suffi- 
ciently close to each other, so that as C varies in the interval P(A,) < 
C < P(A,), the closed branch of the surface P(qi) = C does not extend to 
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infinity. 

Since the singular point A, is a node of the system (61, the integral 
curves fill the entire space in the neighborhood of the point A,, and 
every point on the closed branch of the surface P(qi) = C with P(A, ) < 
C < P(A,) may be joined to the point A, by an integral curve. In addition, 
one integral curve issuing from the point A, reaches the point A,, when 
at C = P(A,) some point on the closed branch of the surface P(qi) = C 
arrives at the point A,. This proves the existence and uniqueness of the 
solution, representing the structure of a fast shock wave. 

Let us now consider the question of the existence of a solution, re- 
presenting the structure of a slow shock wave. If for given values of 
the parameters E,, H,, J, E, slow shock waves may be realized, then as C 
varies, the surface P(qi) = C must encounter a singular point A,. 

We note that the function F(V, T) has a minimum at the point A,, and 
a saddle point at the point A,. Actually, we have the equality 

since at the stationary points, each of the squares in the square 
brackets equals zero.. Expanding in the neighborhood of the point A, the 
function P(qi) - 
T - T(A,), 

P(A,) in powers of the differences V - V(A,) and 
confining our attention to the quadratic terms, and trans- 

forming the obtained quadratic form into a sum of squares, we get a re- 
presentation of the dominant part of the difference P(qi) - P(A,) in the 
neighborhood of the point A, as a sum of squares of the linear combina- 

tions of the differences qi - 
ments, two of the. coefficients 

qi(A3). According to the previous state- 
in this expansion must be negative, and 

the rest positive. Since there are contained in the brackets two negative 
terms (V(A,) < 4dZo2 ), then F(V, T) - F(A,) in the neighborhood of A, 
is represented as the sum of two positive terms, i.e. F(V, T) has a 
minimum at the point A,. Similarly, we show that the function F( V, T) has 
a saddle point at the point A,. ‘lhere are no other stationary points of 
the function F(V, T) in the region 0 < V < 4da2, because otherwise the 
function P(qi) will also have other stationary points in this region, in 
addition to A, and A,. 

Since the function F(V, T) has a minimum at the point A,, the curve 
F(V, T) = F(A,) + 6 has a closed branch in the neighborhood of the point 
A inside which F( V, T) < F(A, ) + 6, and outside which F(V, T) > F(A,) 
+‘;s. At 6 = 0, this branch is represented by the single point A,. The 
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region F(V, T) G C grows as C increases; moreover, from the fact that in- 
side the region 4vH02 > V > 0, T > 0, the vector grad F( qi) nowhere tends 
to infinity, it follows that as C changes, the curve F(V, T) = C moves 
with nonzero velocity. In this connection, the closed branch of the curve 
will remain closed, so long as it does not encounter a stationary point 
and does not go to infinity. 

We shall assume that the intensity of the shock waves are not too 
great, so that the points A, and A, are not too far apart, and the closed 
branch will encounter the point A, during its motion. Since the point A, 
is a saddle point, then as C passes through the value C = &A,), the two 
branches of the curve F( V, T) = C will join at the point A,. 

We shall show that for C = P(A, ), it is possible to construct in the 
region P(qi) < C of the qi-space a two-dimensional closed surface 1, 
which cannot contract to a point by continuous deformation in this 
region. To this end, we set C = P(A,) in.Equation (91, and we consider 
the surface, described by an ellipse at the throat of the four-dimensional 
hyperboloid P(q,) = C, V = const, T = const for values of V and T varying 
along some curve a, connecting in the V-T plane the point A, with some 
other branch of the curve F(V, T) = C. At the end points of the curve a, 
the diameter of the ellipse becomes zero, and at the intermediate points 
it assumes positive values. Therefore, the ellipse sweeps out some two- 
dimensional closed surface, which, obviously, cannot shrink to a point 
by continuous deformation in the region P(qi) < C. For P(A,) < C < P(A,), 
each curve in the V-T plane, joining the two branches of the curve 
F(V, T) = C, corresponds to some two-dimensional surface in the six- 
dimensional space which cannot shrink to a point in the region P(qi) 4 C. 

We observe that as C - 0~ all the finite points in the region V > 0, 
T > 0, of the qi-space will satisfy P(qi) < C. Consequently, the surface 
constructed above may be continuously contracted into a point for suffi- 
ciently large values of C in the region P(qi) < C. From this, it follows 
that the topological type of the region P(q,)< C changes as C increases, 
and that the surface P(qi) = C must pass through a stationary point of 
the function P(qi) as C increases. This point is the point A,, since 
among all the available stationary points A, of the function P(qi), only 
at the point A, does the inequality P(A,) > P(A,) obtain, and only the 
point A, has the property that scme two-dimensional surface, that cannot 

be shrunk to a point in the region P( qi) < C for C < P(d,), can be shrunk 
to a point continuously when C > P(A,). 

Now it is easy to convince ourselves that at least one integral curve 
of the system (6) connects the singular points A, and A,. In fact, let 
us consider the intersection of the three-dimensional surface consisting 
of the integral curves entering the singular point A,, with the surface 
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‘(qi) = C with C = P(A,) - 6, 6 being a sufficiently small positive 
number. This intersection will turn out to be a two-dimensional surface 
Z*(C), which cannot be continuously contracted to a point in the region 
P(qi) 4 C when C < P(A,), and which contracts to the point A4 when 
C - P(A,). From this, it follows that the surface Z*(C) is homologous 
mod 2 to the surface Z in the region P(qi) < C (i.e. in this region we 
can construct a three-dimensional surface bounded by 2*(C) and 1). This 
follows from the fact that passing through a simple stationary point, the 
number of homologically independent (mod 2) cycles in the region P(qi)<C 
changes from unity (111. It is readily seen that the surfaces Z*(C) and 
Z may be continuously deformed into each other in the region P(gi) < C. 

As C varies, the surface Z*(C) will deform continuously. ‘J&s follows 
from the continuity and differentiability of the dissipative coefficients 
L i& and from the.positive-definiteness of the quadratic form D, insuring 
finite, nonzero angles between the surface P(qi) = C and the integral 
curve. 

We shall consider the intensity of the shock waves to be not too large, 
so that as C varies from P(A,) to P(A,), the surface Z*(C) neither leaves 
the region V > 0, T > 0, nor reaches infinity. In this case, the surface 
Z*(C) for arbitrary values of C in the interval P(A,) < C < P(A,) remains 
a closed surface and may be obtained from the surface 1 by continuous de- 
formation in the region P(si) 4 C. As follows from the form of the sur- 
face P(qi) = P(A,) t 6 in the neighborhood of the point A,, any two- 
dimensional surface lying in the region P(qi) < P(A, ) + S and obtainable 
from the surface 1 (which passes through the point As) by continuous de- 
formation in the region P(gi) < P(A,) + 6, cannot be farther from A, 
than by a distance of the order \I 6. Consequently, for C = P(.4, ), the sur- 
face X*(C) passes through the point A,. ‘Ihis proves that there exists at 
least one integral curve connecting the points A, and A,. 

In conclusion, the author thanks S.K. Godunov and G.A. Liubimov for 
discussions contained in the work and G.Ia. Liubarskii for kindly offer- 
ing the author the possibility to become acquainted with his paper before 
its publication. 
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